Prediction of Radiative Heat Transfer in Industrial Equipment Using the Radiation Element Method
نویسندگان
چکیده
The radiation element method by ray emission method, REM , has been formulated to predict radiative heat transfer in three-dimensional arbitrary participating media with nongray and anisotropically scattering properties surrounded by opaque surfaces. To validate the method, benchmark comparisons were conducted against the existing several radiation methods in a rectangular three-dimensional media composed of a gas mixture of carbon dioxide and nitrogen and suspended carbon particles. Good agreements between the present method and the Monte Carlo method were found with several particle density variations, in which participating media of optical thin, medium, and thick were included. As a numerical example, the present method is applied to predict radiative heat transfer in a boiler model with nonisothermal combustion gas and carbon particles and diffuse surface wall. Elsasser narrow-band model as well as exponential wide-band model is adopted to consider the spectral character of CO2 and H2O gases. The distributions of heat flux and heat flux divergence in the boiler furnace are obtained. The difference of results between narrow-band and wide-band models is discussed. The effects of gas model, particle density, and anisotropic scattering are scrutinized. @DOI: 10.1115/1.1388235#
منابع مشابه
Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method
The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...
متن کاملNumerical Investigation of Combined Radiation and Nutral Convention Heat Transfer in a Horizonal Annulus
Combined radiation and natural convection within the annular region of two infinitely long horizontal concentric cylinders are investigated numerically in this research. Radial and tangential radiation effects ate considered using Milne-Eddington approximation for a two-dimensional radiative transfer. The basic conservation equations are discretized with the finite volume method and SIMPLER alg...
متن کاملANALYSIS OF COMBINED CONDUCTION AND RADIATION HEAT TRANSFER IN A RECTANGULAR FURNACE INCLUDING TWO FLAMES
Abstract: The present study deals the theoretical modeling aspects of coupled conductive and radiative heat transfer in the presence of absorbing, emitting and scattering gray medium within two-dimensional square furnace including two flames. The gray radiative medium is bounded by isothermal walls which are considered to be opaque, diffuse and gray. The well known discrete ordinate method (DOM...
متن کاملEffect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer
In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...
متن کاملRadiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کامل